SynthBilder

MAT 201A: Media Signal Processing
August Black

1. Introduction

The transformation of an acoustic signal from the time domain into other mathematical representations
of that signal is one of the key concepts of digital signal processing. Of these types of transformations,
the Fourier transform is one of the most significant. The DFT (Discrete Fourier Transform) takes a
discrete time domain signal and breaks it up into discrete frequency bins of magnitude and phase
counterparts. This is know as the spectrum.

The Fast Fourier Transform, or FFT, is an optimized version of the DFT for computer systems. Running
an FFT over an audio segment of N samples will return an array of (N/2)+1 complex niniherseal

and imaginary parts of these complex numbers make up the magnitudes of cosine and sine waves with
frequencies equally spaced between zero and one-half of the sampling rate. However, the addition of a
cosine and sine wave at the same frequency is the same as a single cosine wave with different amplitude
and shift in phase. This can be stated as such:

A*cos(x) + B*sin(x) = M*cos(x+ theta)
where
M=sqrt(A"2 + B"2) and theta=arctan(B/A).

In this case, A is the real part of the array returned by the FFT and B is the imaginary part.

Inversely, to go from the spectral domain back to the time domain, one only needs to add all of the
phasers from the FFT.

M[1] * cos(2 * pi * f[1] * t[] + theta[l]) +
M[2] * cos(2 * pi * f[2] * t]] theta[2]) +
M[3] * cos(2 * pi * f[3] * t[] + theta[3]) +

+ +

i\./i[n] * cos(2 * pi * fl[n] * t[] + theta[n])

Another challenge for digital signal processing is windowing. The method for transforming an entire
time domain signal of significant length into the spectral domain is to break the signal into equal parts
(called windows), and do the FFT over each part. However, windows come in all shapes and sizes and
will have a significant impact on the transformations. The simplest of these is a rectangular window.
However, others such as the Hanning or Tukey window are also very useful.

SynthBilder

Figure 1. From left to right: Rectangular, Hanning, and Tukey windows

— o — -
L N s N \] - I
0: I"'L Jn"r \lllnl“lbl\-‘u '[ll |I|’|1 I'.”"| e ‘1.‘ ||"1 . o: I.\‘"' f i "'1."' '.'J,"Inﬂ ‘.\ "f"\. e'r I.‘ O 0: i, .'J‘r "L,'Il\‘-[‘.)\-l[-f'uL [.f Ii, It b W b 1
Wi, | b N e ! v Vi L A R R ' e i I Yy {
asf "Iy v w ¥ - ! asp V[tow W st) to W 'y Y
o 1) am 400 £ 00 00 I T P R = T R 1o 10 zm 00 a0 500 B
1 R 1 r 1 |r| ||| 1 - 1 P 1 I o ' X ~ I -
as | 0s 05 n os| N os| ™, os(, os / AR L Y f4 1 os| /
0 r'xl 7 ‘rﬁ- o .flu\ r‘ull illl I H I\r/wl h'. AT |'|] i, 0 h. N ° .f\"Fl\l'uai“‘_ . P Y f‘l - ol r'lI AT 0 /iy 1’ i i«l i Jnl U‘".I'd 1Iu- N
a5 J“1|n.\1'h-| " asf M |||||. llr' 5 III I i 05 ‘h N 05 a5 Ll 'l{l'l 05 ‘I'n.\'h-l N a5 A Vi as| l.u lUI
R T . T T AT N o6 200 T T N] T
1 — 1 ™= T e 1 = - 7 —
05 {) i fl 05 A ',?_:\\"" I A 1 ast f‘* W e .
o e \AHIM \Jr'.u"‘* ['llll £ ..‘LJ A Ill'] ’ [S AW it W\ L Min'S r',r I ol A "'C"'A"f"‘-)‘\lj °"‘-‘H AT T Loy
¥ T - —— T T = ™ i ¥ oo
asf’ 1“\1,\,' Y ||_|'|| I Y \ ! 05 "‘vJ R J.'n 1 fas} W “l]l‘.l vl]I_.I'\'I‘ II";,'r v

L L K L . L e L L L L L L L L . L L
1o 200 o 400 o0 &0 o] 100 186 2000 2 W0 3 400 430 S0 100 200 3 am 00 EOO

In the figure above you see three separate graphics. In each graphic the orignal signal is split up into 3
windows of equal length. In the middle row of each graph, you see the plot of the 3 signal segments (in
blue) after being shaped by the windowing function (in red). The bottom row of each graph shows the
final signal after the 3 segments have been put back together, taking overlap into account. Where the
segments overlap, the signals are added. For a Hanning window, the overlap is 1/2 the size of the
window. A Tukey window, however, can change shapes according to an alpha value. With an alpha of 0, a
Tukey window is a rectangle. With and alpha of 1, a Tukey window is a Hanning window. It is therefore

a very flexible window. For a Tukey window, the overlap is floor(window_size - alpha*window_size/2).

To represent an entire audio clip, FFT’s are taken of each windowed segment. As said, the FFT produces
an array of real and imaginary parts of complex numbers. In cartesian form, these are the magnitudes of
cosine and sine waves, respectively. Conversion to polar form yields magnitude and phase of single
cosine signals. In polar form, both arrays of magnitude and phase can be seen either horizontally as a plot
of magnitude or phase value over frequency. Or, they can be viewed as vertical columns, or histograms,
where the y axis is frequency and the pixel value (brightness) represents the magnitude or phase values.
The following figure shows 3 windowed audio segments that have been transformed by an FFT. The
second row shows the magnitude and phase of each segment plot horizontally (x=value,y=frequency).
The third row shows a histogram of the magnitude and phase (y=frequency, x=1, z=value).

SynthBilder

Figure 2. FFT of 3 windowed audio segments

n S| LA g A |

FET

magnitude/\ phase /\ /\

b
| |

A spectrogram or sonogram is the same as above, only the single histogram columns are concatenated
horizontally. Another thing to note is that a spectrogram normally only shows the magnitude portion of a
signal. In many ways, a spectrogram is an image of the acoustic signal.

Figure 3. Sonogram: showing only the magnitude portion of the signals spectrum

2. SynthBilder Application

Figure 4. SynthBilder screenshot

audio image

SynthBilder

by August Black 2004

— Image Conw, Options. ——
Tukey Apha 1
B I
Samping Fate

44100 =

Duration

[Sound Conv. Dptions —
Tukey Apha 0.2
S -
Sampling Fiale
22050)
FFT size { image height)
T 255

convertzimage |

Disply

* maorituge vnnmevnml

Colormap
ey =

width: 256
height: 255

s s
35 4

audio duration: 1 0024
samping rate: 44100
chaniwla: |

SynthBilder

SynthBilderis a Matlab program that transforms an audio signal into a sonogram image and vice versa. It
allows one to study and examine the conversion of digital audio signals from the time domain into the
frequency domain and back again. AdditionaBynthBilderdemonstrates the use of windowing in the
transformation of an audio signal. But, most importarlynthBildewill allow one to compose in a

visual manner with sound, and provide a fine-tuned mechanism for sound synthesis.

The first part of the Matlab application takes a sound as input and produces a spectrogram image as
output. The magnitudes and phases of each windowed segment are scaled from 8-bit unsigned integers
(0-255) where magnitude is mapped to the red channel and phase is put on the green channel. For now,
the blue channel is unused, but is reserved for future use in describing the stereo pan of a signal.
Magnitude values from an FFT range from 0 to 1, so conversion to integers means just multiplying by

SynthBilder

255. Since phase will range from minus PI to PI, it must first be scaled to a positive range and then
multiplied by 255 as so: (phase + pi) / (2*pi) * 255

Figure 5. Sound to image conversion

cartesian
to
FFT
polar
— conversion

The second part of the application is able to take a spectrogram as input and produce a sound. The
spectrogram can be painted in any program (such as the Gimp) and loaded from a file on disk. This
process is almost the exact inverse of the sound-to-image conversion, except that instead of doing an
Inverse FFTSynthBilderrenders the sound by means of additive synthesis. The advantage of additive
synthesis over the IFFT is that it allows more control for playing with time and frequencies. The
following figure demonstrates how this is done.

Figure 6. Image to sound conversion: phaser addition & windowing

image e

frequency

time

SynthBilder

The Red and Green pixel column values of the image are converted back to magnitude and phase for
specified frequencies (spaced evenly from 0 to Fs/2 in the ceSgmiiBildef and then added and

windowed. Each column segment is rendered individually, and are then concatenated with a specified
overlap size to form the entire segment of audio. If the image is a single channel image, then magnitudes
are used for the conversion and phase can either be set to zero overall or be randomly generated.

3. Considerations

When converting from image to sound, there is no telling if phase has been included in the image (ex. the
image is black and white only). And, becagmthBildershould also be able to read images that don’t

have proper phase saved on the green channel or images that are only black and white, it is necessary to
make some special considerations.

The main problem in “creating" phase for a signal is how to know the shape and direction of the tail of a
window so that when the following window segment is overlapped and added to it, there is a smooth
transition from one segment to the next. When the window is a rectangle, there is a big chance that the
end of one segment is completely out of line with the beginning of the other. Here you notice an audible
'click’. When a Hanning or Tukey window is used, there still can be various kinds of constructive or
destructive interference where the windows overlap.

Figure 7. Phase problem seen on overlapping segments windowed in 3 different ways

rectangular window Tukey window wialpha 0.5 Harning window

The graphic above shows the transition from one signal at a fixed frequency overlapped with another
signal at the same frequency. One can see how the window can smooth over the border between the two.
However, a smoothing window doesn’t guarantee that cancellations won't take place. When multiple
signals with varying frequencies are added, the problem is expanded.

In terms of image to sound conversion, this problem can be defined as how to gracefully traverse the
border of one column to the next column. The problem can best be seen when dealing with pure tones.
To demonstrate this, | provide the following two graphics.

SynthBilder

Figure 8. Phase problem on a single frequency

e WA

m

random phase

Both signals above were rendered with a Tukey window at alpha 0.2. The black and white image on the
left represents the magnitude components of a spectrum. The two signals on the left show a close-up of
the rendered audio at a place where windows have been overlapped. Above, one can see that with the
same window, a change in phase can make a big difference in the signal.

Figure 9. Phase problem over changing frequency

image

zero phase

IR —— T =N —

random ;ﬁhlase .

Here, as the sound is rendered from the image, column by column (audio segment by audio segment),
one should hear a single tone that is pitched from low to high (Fs/2). On the right are two plots of the
rendered audio - the top one with phase set to zero and the bottom one with random phase. In both cases,
the overlap from one windowed segment to the next leaves some residual of the border, however, in most
cases the random phase variation sounds the most pleasing.

An idea for the future that might address this problem would be to develop a graphical synthesis
technique similar t&ynthBilderthat uses vector graphics as input instead of raster images. With a vector
representation of sound (as an image), there would be no column 'borders’ to traverse. That way, each
sound transition "object" - a vector based line or shape - could be rendered with scalable phase based on
its position in time. Additionally, it would allow for frequencies to be ramped smoothly as if it were an
analogue transition from one frequency to the next.

SynthBilder

4. Conclusion

With this project, | was able to narrow in on and understand some significant, although basic, aspects of
signal processing. The next steps 8ymthBilderare to find a clever way to include panning information

for rendering to a stereo audio signal, and to perform optimizations, possibly porting the code into C for
a speedier interface. Of course, the main next ste@yothBilderis to keep generating flavorful audio

clips.

5. Related Works and References

For a online version with click-able links and color graphics please refer to either
http://luv.mat.ucsb.edu/synthbilder or http://aug.ment.org/synthbilder

Loris (http://www.cerlsoundgroup.org/Loris/) - an Open Source C++ class library implementing
analysis, manipulation, and synthesis of digitized sounds using the Reassigned Bandwidth-Enhanced
Additive Sound Model.

Bitmaps & Waveshttp://www.webcenter.ru/~vsoft/steps/bwSteps.html) - a simple program converts
bitmap images to sounds, and vice versa. Every line of loaded image is assumed to be a spectrum of
sound, and it is converted to sound signal by means of inverse Fourier transform

Sculptor(http://sculptor.sourceforge.net/sculptor.shtml) - is designed for the manipulation of sounds in
other domains.

Metasynth(http://www.uisoftware.com/) - a fast and flexible graphic sound design and synthesis
environment.

Woon Seung Yeo’'s MAT 310 project
(http://wvww.mat.ucsh.edu/~woony/research/winter01/mat310/index.html) - image sonification: image to
sound.

"Equation” by Aphex Twilhttp://www.visualizationsoftware.com/gram/example15.html) - Examples of
Audio Spectrum Analysis

DSP Guidghttp://www.dspguide.com/pdfbook.htm) - Chapter 8 and subsequent chapters of "DSP
guide" on the application of the Fourier Transform.

Signal Processing First, James H. McClellan, Ronald W. Schafer, Mark A. Yoder. Pearson Education,Inc.
- Chapter 3 on Spectrum Representation, especially 3.7 on Time-Frequency spectrum.

SynthBilder

John Wilder Tukey - a short biography
(http://vww.mrs.umn.edu/~sungurea/introstat/history/w98/Tukey.html)

Notes

1. Actually, an FFT will return (N + 1) complex numbers for an N-length time signal. However, N/2 of
these numbers represent negative frequencies, which for many purposes can be disregarded.

2. Tukey was a prolific scientist and statistician. One of his most famous contributions to the field of
information visualization is the Box-and-Whisker Plot (also available in matlab).

	1. Introduction
	2. SynthBilder Application
	3. Considerations
	4. Conclusion
	5. Related Works and References

